
SamDunk	
	

Sunday,	March	27,	2016	 1	

eMMC	backdoor	leading	to	bootloader	unlock	on	Samsung	Galaxy	Devices	
Discovered	and	documented	by	Sean	Beaupre	(beaups)	

	
Affected	products	
This	vulnerability	affects	certain	bootloader-locked	Qualcomm	based	Samsung	Galaxy	products	
containing	Samsung	eMMC.		Tested	and	confirmed	to	unlock	the	bootloader	of	the	Verizon	
Samsung	Galaxy	S5.		While	possibly	every	device	containing	a	Samsung	eMMC	controller	is	
vulnerable	to	the	attack	described	below,	it’s	usefulness	as	a	bootloader	unlock	is	likely	limited	
to	select	Samsung	Galaxy	devices.	
	
	

Samsung’s	unlock	mechanism	
Manufacturers	employ	a	wide	variety	of	methods	and	mechanisms	to	determine	and	control	a	
device’s	bootloader	lock	status.		Motorola	uses	TrustZone	protected	fuses,	HTC	uses	data	in	a	
write	protected	region	of	eMMC,	and	some	LG	devices	use	a	signed	blob	in	the	boot	(kernel)	
partition.		There	are	likely	many	other	methods,	but	the	concept	is	the	same:	only	allow	the	
unlock	status	to	be	changed	via	a	controlled	and	deliberate	method.		Additionally,	when	
unlocking	the	bootloader	of	most	devices,	the	user’s	data	partition	is	wiped	to	ensure	that	the	
unlock	wasn’t	performed	in	attempt	to	maliciously	gain	access	to	a	user’s	data.			
	
In	some	cases,	like	most	devices	built	for	use	on	the	Verizon	network,	the	ability	for	a	user	to	
unlock	the	bootloader	is	blocked	entirely.		One	such	device	was	the	Galaxy	S5	used	for	this	
research.			The	Galaxy	S5	(and	probably	some/many	other	Galaxy	devices)	uses	a	unique	
mechanism	for	determining	a	device’s	unlock/dev	status.		As	Researched	and	discovered	by	
@ryanbg	(http://forum.xda-developers.com/member.php?u=766721):		

	
A	blob	 in	 the	aboot	partition	 image	 is	 read	and	decrypted.	 	 Then,	 the	device’s	
eMMC	CID	is	hashed	and	compared	to	the	value	of	the	decrypted	blob.		If	they	
match,	the	device	is	considered	unlocked.	

	
Basically,	at	some	point	in	the	manufacturing	process,	when	a	device	is	configured	to	be	a	“dev-
edition”	device,	Samsung	hashes	the	device’s	eMMC	CID,	pads	it,	signs	(or	encrypts?)	it	with	
their	private	key,	and	places	that	signed	data	in	the	device’s	aboot	partition.		At	every	boot,	
aboot	is	able	to	verify	that	the	device	is	actually	a	dev-edition	device.		
	
	What	is	an	eMMC	CID?		According	to	eMMC	documentation:	
	

“The Device IDentification (CID) register is 128 bits
wide. It contains the Device identification information
used during the Device identification phase (e•MMC
protocol). Every individual flash or I/O Device shall
have an unique identification number. Every type of

SamDunk	
	

Sunday,	March	27,	2016	 2	

e•MMC Device shall have a unique identification
number.”

Great!		We	can	simply	change	the	eMMC	CID	to	match	one	from	a	factory	dev-edition	device,	
and	then	flash	the	aboot	partition	(containing	the	hashed	and	signed	CID	blob)	from	the	same	
dev-edition	device.		Except,	elsewhere	in	the	eMMC	documentation:	

	

“Programming of the Device identification
register. This command shall be issued only once.
The Device contains hardware to prevent this
operation after the first programming. Normally
this command is reserved for the manufacturer.”

Effectively, the CID is a serial number programmed at the factory and, according to the eMMC
standard, is only programmable once. What “hardware” prevents the CID from being
reprogrammed? Is it really stored in some OTP region? The fact that an eMMC contains mass
amounts of non-volatile reprogrammable NAND memory should make any researcher skeptical
that it is truly “write-once”.

	

Enter	vendor	commands	
Generally	speaking,	vendor	commands	are	commands/codes/instructions	that	don’t	appear	in	
any	official	standards	and	allow	a	host/user/factory/software	to	interact	with	a	device	in	a	non-
standard	way.		Specifically	for	Samsung	eMMC,	a	special	(mostly)	undocumented	CMD62	in	
conjunction	with	some	“secret”	arguments	are	used.		Some	of	Samsung’s	vendor	commands	
were	publicly	released	by	Samsung	due	to	a	software	defect	in	their	eMMC	controller	firmware.		
Samsung	needed	the	linux/android	kernel	to	be	able	to	patch	the	eMMC	firmware	in	realtime,	
and	thus	had	to	release	and	document	some	of	their	proprietary	eMMC	vendor	commands:	
	
https://android.googlesource.com/kernel/omap/+/3c57a612f12b069bbc863ec0c74a26850d76	
a9e8%5E!	
	
Samsung	provided	a	critical	function	for	enabling	further	research:	mmc_movi_read_cmd.		
With	a	simple	loop	of	this	function,	we	are	able	to	dump	the	entire	running	firmware	and	ram	
of	the	eMMC	controller.	
	

	
	

SamDunk	
	

Sunday,	March	27,	2016	 3	

Finding	something	useful	
The	first	step	was	to	find	what	function	in	Samsung’s	firmware	handled	a	host’s	PROGRAM_CID	
request.		A	quick	(and	quite	lucky,	as	most	eMMC	commands	use	a	function	pointer	table)	
search	for	the	immediate	value	26	(eMMC	command	26	is	PROGRAM_CID)	reveals	this:	
	

	
	
	

SamDunk	
	

Sunday,	March	27,	2016	 4	

	
Some	basic	setup	is	done,	then	the	opcode	is	checked	to	decide	whether	or	not	the	host	is	
trying	to	program	the	CSD	register	or	the	CID	register.	Since	we	are	trying	to	reprogram	the	CID	
register,	let’s	look	at	the	program_cid	function	called	when	R0	=	0x1A	(26):		
	
	

	
		
	
	
	
	
	
	

SamDunk	
	

Sunday,	March	27,	2016	 5	

The	function	read_security_register	is	important	and	very	simple:	

	
	
It	simply	reads	a	value	from	ram,	stores	it	in	the	caller’s	pointer,	and	returns.		Back	to	the	
program_cid	function:	
	

	
			
	
	

SamDunk	
	

Sunday,	March	27,	2016	 6	

The	security	register	is	read	and	bit	0	is	tested.		If	bit	0	is	clear,	a	branch	is	taken	to	loc_4AC84,	
and	ultimately	the	CID	programming	fails.		If	bit	0	==	1,	the	function	continues:	

1.) Bit	0	is	cleared,	and	the	security	register	is	updated	with	the	new	value	
2.) The	CID	is	programmed	

	
Surely	this	“security_register”	can’t	be	the	“hardware to prevent this operation after the first
programming” as described in the eMMC spcifications; it is simply a dword in the controller’s
RAM. How can we get bit 0 set in the security_register? A quick refs search to
write_security_register answers this question quickly:

	
	

vendor_security_functions()	is	a	real	mess:	
	
	

	
	
	

SamDunk	
	

Sunday,	March	27,	2016	 7	

We	need	to	find	a	call	to	write_security_register	with	a	value	of	1,	to	allow	us	to	reprogram	the	
CID.		Zooming	in:	
	
	
	
	

	
	
	
Bingo:	
	
	

	
	
You	can	see	very	clearly,	the	security	register	is	read,	bit	0	is	set,	and	the	security	register	is	
updated,	enabling	programming	of	the	CID.	
	
Working	backwards	through	the	~100	argument	calculations	in	the	vendor	command	handler,	
I’ll	simply	state	that	the	arg	value	that	needs	to	be	passed	with	the	CMD62	is	0xEF50.		Issuing	
the	vendor	command	with	argument	0xEFAC62EC	followed	by	the	vendor	command	with	
argument	0xEF50	is	Samsung’s	backdoor	to	allow	reprogramming	of	the	eMMC	CID.	
	
	
	
	

SamDunk	
	

Sunday,	March	27,	2016	 8	

	
	
	
	

Doing	the	deed	
I’ve	pushed	code	to	github	to	change	the	CID	in	Samsung	eMMC	using	the	backdoor	described	
above:	https://github.com/beaups/SamsungCID	
	
Caveats	(important):	

1.) It	is	generally	a	bad	idea	to	do	much	with	Samsung	vendor	codes	from	userspace,	
as	you	can	not	take	a	lock	on	the	eMMC.		The	program_cid	backdoor	appears	to	be	
quite	safe,	but	do	NOT	try	to	update	the	code	to	do	operations	such	as	
reading/writing	controller	memory.		You’ll	want	to	do	that	with	a	kernel	module.		
You’ve	been	warned.	

2.) While	the	code	will	change	the	device’s	CID,	you	will	need	to	check	(after	reboot)	
to	see	that	the	CID	changed	“perfectly”.		In	some	instances,	a	few	bits	are	kept	
from	the	original	CID.		If	that	happens,	you	will	need	to	write	a	kernel	module,	
dump	the	controller	memory,	find	the	current	CID	in	the	controller’s	memory,	
patch	it	to	0,	and	program	the	CID	again.	

3.) I	have	not	researched	what	else	Samsung/Android/bootloaders/apps/etc.	might	
use	the	device’s	CID	for.		Change	your	CID	at	your	own	risk.	

4.) If	your	goal	is	to	turn	your	device	into	a	dev-edition	device,	YOU	will	need	to	find	
the	dev-edition	aboot	image	and	the	corresponding	CID.		Further,	you	should	only	
attempt	to	flash	any	aboot	through	ODIN.		If	ODIN	rejects	the	flash,	you’ve	done	
something	wrong.	

5.) Only	UID	0	has	write	access	to	mmcblk0,	which	is	needed	to	issue	the	necessary	
IOCTLs.	

6.) Do	not	PM,	email,	call,	or	otherwise	stalk	me	looking	for	support,	supporting	files,	
or	anything	else.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

